Thermal simulation of an oil-cooled permanent magnet synchronous motor

Zeng Jinling, Wang Jinhao, Sun Xiaoji
Motor System Development Section, Electric Vehicle Department, CHINA FAW CORPORATION LIMITED R&D CENTER

Abstract

Overheating in E-motor results in detrimental effects such as degradation of the insulation materials, magnet demagnetization, decreased motor efficiency and lifetime. Hence, it is important to find ways of optimizing performance and reliability of E-motor through effective thermal simulation and consequently reduce operating and maintenance costs. Modern thermal simulation techniques can be classified into two general methods, thermal circuit and FEM method. But because the 3D FEM method can more accurately predict and identify the temperatures of the critical points of the motor, it is more effectively than the thermal circuit method to evaluate the E-motor temperature rise. This paper describes a 3D thermal methodology for a permanent magnet synchronous motor by coupling 2D electromagnetic losses analysis with 3D thermal simulation. The energy sources are obtained from electromagnetic losses simulation by using JMAG. Coupling the loss results, the 3D nonlinear thermal model provided the detailed temperature distribution and rising results in E-motor assembly. Finally, a bench test was done to evaluate the FEM result, 3D thermal simulation results show good agreement with experimental results.

To read Proceedings, please sign-in.

Protected content here, for members only.
You need to sign in as a Regular JMAG Software User (paid user) or JMAG WEB MEMBER (free membership).

By registering as a JMAG WEB MEMBER, you can browse technical materials and other member-only contents for free.
If you are not registered, click the “Create an Account” button.

Create an Account Sign in 

Remember me
Sign In
Create an account (Free) About authentication ID for JMAG website

Search Filter

  • All Categories

Proceedings Archives